Asymmetric ABC-triblock copolymer membranes induce a directed insertion of membrane proteins.

نویسندگان

  • Roxana Stoenescu
  • Alexandra Graff
  • Wolfgang Meier
چکیده

Asymmetric molecules and materials provide an important basis for the organization and function of biological systems. It is well known that, for example, the inner and outer leaflets of biological membranes are strictly asymmetric with respect to lipid composition and distribution. This plays a crucial role for many membrane-related processes like carrier-mediated transport or insertion and orientation of integral membrane proteins. Most artificial membrane systems are, however, symmetric with respect to their midplane and membrane proteins are incorporated with random orientation. Here we describe a new approach to induce a directed insertion of membrane proteins into asymmetric membranes formed by amphiphilic ABC triblock copolymers with two chemically different water-soluble blocks A and C. In a comparative study we have reconstituted His-tag labeled Aquaporin 0 in lipid, ABA block copolymer, and ABC block copolymer vesicles. Immunolabeling, colorimetric, and fluorescence studies clearly show that a preferential orientation of the protein is only observed in the asymmetric ABC triblock copolymer membranes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing the association of triblock copolymers with supported lipid membranes using microcantilevers.

Pluronics are a class of amphiphilic triblock copolymers that are known to interact with cellular membranes in interesting ways. The solubility of these triblock copolymers in free lipid membranes can be altered with temperature, allowing the possibility of tuning their membrane insertion. However, for supported lipid membranes, the asymmetric local environment and the strong influence of the s...

متن کامل

Gas-tight triblock-copolymer membranes are converted to CO2 permeable by insertion of plant aquaporins

We demonstrate that membranes consisting of certain triblock-copolymers were tight for CO₂. Using a novel approach, we provide evidence for aquaporin facilitated CO₂ diffusion. Plant aquaporins obtained from heterologous expression were inserted into triblock copolymer membranes. These were employed to separate a chamber with a solution maintaining high CO₂ concentrations from one with depleted...

متن کامل

Complex microstructures of ABC triblock copolymer thin films directed by polymer brushes based on self-consistent field theory

The morphology and the phase diagram of ABC triblock copolymer thin film directed by polymer brushes are investigated by the self-consistent field theory in three dimensions. The polymer brushes coated on the substrate can be used as a good soft template to tailor the morphology of the block copolymer thin films compared with those on the hard substrates. The polymer brush is identical with the...

متن کامل

Self-assembly of amphiphilic ABC star triblock copolymers and their blends with AB diblock copolymers in solution: self-consistent field theory simulations.

The self-assembled morphologies of amphiphilic ABC star triblock copolymers consisting of hydrophilic A blocks and hydrophobic B and C blocks and the blends with their counterpart linear AB diblock copolymers in solution are investigated by 2D real-space implementation of self-consistent field theory (SCFT) simulation. The star triblock copolymers self-assemble in solution to form various micel...

متن کامل

Complex domain architecture of multicompartment micelles from a linear ABC triblock copolymer revealed by cryogenic electron tomography.

Cryo-electron tomography of raspberry-like multicompartment micelles formed by a linear ABC triblock copolymer in water revealed that the fluorocarbon domains may be dispersed all over the hydrocarbon core.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Macromolecular bioscience

دوره 4 10  شماره 

صفحات  -

تاریخ انتشار 2004